Durée : 144 minutes

Algèbre linéaire Examen Partie commune Automne 2017

Enoncé

Pour les questions à choix multiple, on comptera :

- +3 points si la réponse est correcte,
 - 0 point si la question n'est pas répondue ou s'il y a plusieurs croix,
- −1 point si la réponse est incorrecte.

Les notations et la terminologie de cet énoncé sont celles utilisées dans les séries d'exercices et le cours d'Algèbre linéaire du semestre d'Automne 2017.

Notation

- Pour une matrice $A,\,a_{ij}$ désigne l'élément situé sur la ligne i et la colonne j de la matrice.
- Pour un vecteur x, x_i désigne la i-ème coordonnée de x.
- Id_m désigne la matrice identité de taille $m \times m$.
- $\, \mathbb{P}_n$ désigne l'espace vectoriel des polynômes réels de degré inférieur ou égal à n.
- Pour $x, y \in \mathbb{R}^n$, le produit scalaire canonique est défini par $\langle x, y \rangle = x^T y$.

Première partie, questions à choix multiple

Pour chaque question marquer la case correspondante à la réponse correcte sans faire de ratures. Il n'y a qu'une seule réponse correcte par question.

Question 1	: Si	A est	une	matrice	de	${\it taille}$	7×6	telle	que	ses	${\rm trois}$	dernières	colonnes	sont
linéairement	dépe	ndante	es, al	ors										

- \bigcap rang A=3
- \bigcap rang A = 4

Question 2 : Soit h un paramètre réel. Soient

$$v_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \\ h \end{pmatrix}, \qquad v_2 = \begin{pmatrix} h \\ 1 \\ 0 \\ 1 \end{pmatrix}, \qquad v_3 = \begin{pmatrix} 1 \\ h \\ 1 \\ 0 \end{pmatrix}, \qquad v_4 = \begin{pmatrix} 0 \\ 1 \\ h \\ 1 \end{pmatrix}.$$

Alors v_1 appartient au sous-espace vectoriel de \mathbb{R}^4 engendré par $\{v_2,v_3,v_4\}$ si et seulement si

- $h \in \{-2, 0, 2\}$

- $h \in \{-2, 2\}$

Question 3 : Soit A une matrice carrée de taille $n \times n$ et soit P une matrice de taille $n \times n$ telle que chacune des colonnes de P est un vecteur propre de la matrice A.

Alors il est toujours vrai que

- \square AP = PD où D est une matrice diagonale
- \square P est inversible et PAP^{-1} est une matrice diagonale
- $\hfill P$ est inversible et $P^{-1}AP$ est une matrice diagonale
- \square PA = DP où D est une matrice diagonale

Question 4: Soient
$$v = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$
 et $W = \text{Span} \left\{ \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} \right\}$.

Si \mathbb{R}^3 est muni du produit scalaire canonique, alors la projection orthogonale de v sur W est

$$\square \begin{pmatrix} 3 \\ 5/2 \\ 1/2 \end{pmatrix} \qquad \square \begin{pmatrix} 2 \\ 3/2 \\ 5/2 \end{pmatrix} \\
\square \begin{pmatrix} 3 \\ 5 \\ 1 \end{pmatrix} \qquad \square \begin{pmatrix} 3 \\ 4 \\ 2 \end{pmatrix}$$

Question 5 : Soit A une matrice de taille $m \times n$. Supposons qu'il existe une matrice B de taille $m \times k$ et des vecteurs $v \in \mathbb{R}^n$ et $w \in \mathbb{R}^k$ tels que Av = Bw. Alors il est toujours vrai que

Question 6 : Soit $\mathcal{C}=\left\{1,t,t^2\right\}$ la base canonique de \mathbb{P}_2 et $T:\mathbb{P}_2\to\mathbb{P}_2$ l'application linéaire définie par

$$T(a+bt+ct^2) = a+b(t-1)+c(t-1)^2 \quad \text{pour tout } a,b,c \in \mathbb{R}.$$

La matrice M de T par rapport à la base \mathcal{C} , telle que $\big[T(p)\big]_{\mathcal{C}}=M\,\big[p\big]_{\mathcal{C}}$ pour tout $p\in\mathbb{P}_2$, est

Question 7: Soit

$$A = \overline{\left(\begin{array}{ccc} 1 & 0 & -3 \\ -2 & 2 & 1 \\ 3 & -8 & 7 \end{array}\right)}.$$

Calculer la factorisation LU de la matrice A (en utilisant seulement des opérations élémentaires sur les lignes consistant à additionner un multiple d'une ligne à une autre ligne en dessous). Alors la matrice L est donnée par

$$\Box L = \overline{\begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -3 & 4 & 1 \end{pmatrix}} \qquad \Box L = \overline{\begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 3 & -4 & 1 \end{pmatrix}} \\
\Box L = \overline{\begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 3 & -8 & 1 \end{pmatrix}} \qquad \Box L = \overline{\begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ -3 & 8 & 1 \end{pmatrix}}$$

Question 8: Soient A une matrice de taille $m \times n$ et $b \in \mathbb{R}^m$. Soit $c = \operatorname{proj}_{\operatorname{Im}(A)} b$. Alors, il est toujours vrai que
la solution au sens des moindres carrés de l'équation $Ax = b$ est $A^{-1}c$
toute solution de $Ax = c$ est une solution au sens des moindres carrés de $Ax = b$
l'équation $Ax = c$ possède une solution unique
requestion risk = e possede une sortation unique
Question 9 : Soit $T: \mathbb{R}^4 \to \mathbb{R}^4$ l'application linéaire définie par
$T\left(\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}\right) = \begin{pmatrix} x_1 + 2x_2 + x_4 \\ 3x_1 + 6x_2 + x_3 \\ x_1 + 2x_2 + x_3 - 2x_4 \\ 3x_3 - 9x_4 \end{pmatrix}.$
Alors
Question 10 : Soit $T: \mathbb{R}^4 \to \mathbb{R}^4$ l'application linéaire de l'exercice précédent. Alors
Question 11: Soient A et B deux matrices inversibles de taille $n \times n$. Alors le nombre
$\det(A^{-1})\det(A+B)\det(B^{-1})$
est égal à 2
\square est égal à $\det(B^{-1}) + \det(A^{-1})$
$\hfill \square$ n'est pas défini car la matrice $A+B$ n'est pas forcément inversible
est égal à $det(B^{-1} + A^{-1})$

Question 16 : Soit $T: \mathbb{R}^3 \to \mathbb{R}^3$ l'application linéaire définie par

$$T\left(\left(\begin{array}{c}x_1\\x_2\\x_3\end{array}\right)\right)=\left(\begin{array}{c}2x_2+3x_3\\4x_1-3x_2+2x_3\\5x_1-6x_3\end{array}\right).\quad \text{Soit }\mathcal{B}=\left\{\left(\begin{array}{c}1\\1\\0\end{array}\right),\; \left(\begin{array}{c}1\\0\\1\end{array}\right),\; \left(\begin{array}{c}0\\1\\0\end{array}\right)\right\}.$$

La matrice M de T par rapport à la base \mathcal{B} , telle que $\big[T(x)\big]_{\mathcal{B}}=M\big[x\big]_{\mathcal{B}}$ pour tout $x\in\mathbb{R}^3$, est

$$\square M = \begin{pmatrix} -3 & 5 & 4 \\ 4 & 1 & -2 \\ 2 & 0 & -5 \end{pmatrix}$$

Question 17: Soit

$$A = \left(\begin{array}{rrr} 2 & -1 & -1 \\ -4 & 1 & 0 \\ 2 & 2 & 3 \end{array}\right).$$

Les valeurs propres de A sont

- 1 et 4
- 1 et 2
- 1, 2 et 3
- 1 et 3

Question 18 : Soit A la matrice de l'exercice précédent et E_1 l'espace propre associé à la valeur propre $\lambda = 1$. Alors:

Question 19: La matrice

$$B = \left(\begin{array}{cccc} 0 & x & 1 & 2\\ 1 & 0 & 0 & x\\ -1 & 1 & x & 0\\ 2 & -1 & 0 & x \end{array}\right)$$

est inversible si et seulement si

Question 20 : Si \mathbb{R}^3 est muni du produit scalaire canonique, laquelle des bases suivantes est orthonormée?

$$\square \left\{ \begin{pmatrix} \sqrt{3}/3 \\ \sqrt{3}/3 \\ \sqrt{3}/3 \end{pmatrix}, \begin{pmatrix} \sqrt{2}/2 \\ 0 \\ -\sqrt{2}/2 \end{pmatrix}, \begin{pmatrix} \sqrt{6}/6 \\ -\sqrt{6}/3 \\ \sqrt{6}/6 \end{pmatrix} \right\}$$

$$\square \left\{ \begin{pmatrix} 1\\1\\1 \end{pmatrix}, \begin{pmatrix} 2\\1\\0 \end{pmatrix}, \begin{pmatrix} 1\\-2\\1 \end{pmatrix} \right\}$$

$$\square \left\{ \begin{pmatrix} \sqrt{3}/3 \\ \sqrt{3}/3 \\ \sqrt{3}/3 \end{pmatrix}, \begin{pmatrix} 2\sqrt{5}/5 \\ \sqrt{5}/5 \\ 0 \end{pmatrix}, \begin{pmatrix} \sqrt{6}/6 \\ -\sqrt{6}/3 \\ \sqrt{6}/6 \end{pmatrix} \right\}$$

$$\square \left\{ \begin{pmatrix} 1\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\0\\-1 \end{pmatrix}, \begin{pmatrix} 1\\-2\\1 \end{pmatrix} \right\}$$

Question 21 : Soient A et B deux matrices diagonalisables de taille $n \times n$ telles que chaque espace propre de B est contenu dans un espace propre de A. Alors

- \square AB est diagonalisable si et seulement si A et B ont les mêmes valeurs propres
- \square AB n'est jamais diagonalisable
- \square AB est toujours diagonalisable
- \square AB est diagonalisable si et seulement si A et B ont les mêmes espaces propres

Question 22 : Soient h un paramètre réel,

$$A = \begin{pmatrix} 1 & 7 & 3 \\ 2 & 14 & 1 \\ -1 & -7 & 1 \end{pmatrix} \quad \text{et} \quad b = \begin{pmatrix} h+11 \\ 6 \\ h-1 \end{pmatrix}.$$

Alors l'équation matricielle Ax = b

- \square admet pour unique solution le vecteur $\begin{pmatrix} 7 \\ -1 \\ 6 \end{pmatrix}$ si $h \neq 7$
- \square n'admet aucune solution si $h \neq 7$
- \square admet le vecteur $\begin{pmatrix} 1 \\ -7 \\ 6 \end{pmatrix}$ pour solution si h = 7

Question 23: Soient

$$\mathcal{E} = \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\} \quad \text{et} \quad \mathcal{B} = \left\{ \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} \right\}$$

deux bases de \mathbb{R}^3 . Alors la matrice de passage P de \mathcal{E} vers \mathcal{B} , telle que $[x]_{\mathcal{B}} = P[x]_{\mathcal{E}}$ pour tout $x \in \mathbb{R}^3$, est

Question 24 : Parmi les quatre sous-ensembles de \mathbb{P}_3 suivants :

 $\{p \in \mathbb{P}_3 \mid p(0) = 2, \ p(2) = 0\},\$

 $\{p \in \mathbb{P}_3 \mid p'(t) = 0 \text{ pour tout } t \in \mathbb{R}\},$

 $\left\{p\in\mathbb{P}_3\mid p(t)=2a-at^3\text{ avec }a\in\mathbb{R}\right\},\qquad \left\{p\in\mathbb{P}_3\mid p(t)=ct^2-c^2t\text{ avec }c\in\mathbb{R}\right\},$

combien sont des sous-espaces vectoriels de \mathbb{P}_3 ?

- 1